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Abstract A new kind of gauge theory is introduced, where the minimal coupling and cor-
responding covariant derivatives are defined in the space of functions pertaining to the func-
tional Schrödinger picture of a given field theory. While, for simplicity, we study the ex-
ample of a U(1) symmetry, this kind of gauge theory can accommodate other symmetries
as well. We consider the resulting relativistic nonlinear extension of quantum mechanics
and show that it incorporates gravity in the (0 + 1)-dimensional limit, similar to recently
studied Schrödinger-Newton equations. Gravity is encoded here into a universal nonlinear
extension of quantum theory. A probabilistic interpretation (Born’s rule) holds, provided the
underlying model is scale free.

Keywords Nonlinear functional Schrödinger equation · Gauge symmetry · Newtonian
gravity

1 Introduction

Linearity of the (functional) Schrödinger equation has been an essential and a puzzling in-
gredient of quantum (field) theory since its earliest days. Practically all physical phenomena
show nonlinear behaviour when examined over a sufficiently large range of the dynamical
parameters that determine an evolving object. What singles out the linear dynamics and
validity of the superposition principle for the wave function(al)? Quantum mechanics is
very successfully tested experimentally under a wide range of laboratory conditions. Yet the
mathematical structure of the theory, so far, hinges heavily on the linear structure embodied
in linear operators acting on states represented by rays in a Hilbert space [1, 2].

This raises the question: Are nonlinear extensions possible which agree with the standard
formulation in its experimentally ascertained domain of validity?

If so, could this alleviate the unresolved measurement problem [1–3]? While the outcome
of this second question is still open, it seems worth while to mention that in recent studies of
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the necessarily related wave function collapse or reduction mechanisms by Pearle [4] and by
Bassi [5] the authors indicate that a nonlinear extension of quantum theory might ultimately
account consistently for these effects.

Our present aim is to report on a universal nonlinear extension of quantum field theory
based on a new functional gauge symmetry, which operates on the space of field configu-
rations rather than on the underlying spacetime [6, 7]. In particular, we will argue that this
theory essentially incorporates Newtonian gravity, which invites deliberation whether such
an approach could be of wider use. Gravity, in this picture, appears as a manifestation of the
nonlinearity of quantum mechanics.

Among the numerous earlier works that have attempted to extend quantum theory in
a nonlinear way, we should like to mention these: The work by Kibble and by Kibble
and Randjbar-Daemi is close to ours in that they consider how nonlinear modifications
of quantum field theory can be made compatible with Lorentz or more generally coordi-
nate invariance [8, 9]. Besides considering a coupling of quantum fields to classical gravity
according to general relativity, which induces an intrinsic nonlinearity [9, 10], these au-
thors study mean-field type nonlinearities, where parameters of the model are state depen-
dent through their assumed dependence on expectations of certain operators. The work by
Bialynicki-Birula and Mycielski introduces a logarithmic nonlinearity into the nonrelativis-
tic Schrödinger equation, which has the advantage that many of the nice features of quantum
mechanics are left intact [11]. A number of different nonrelativistic models of this kind have
been systematically studied by Weinberg, offering also an assessment of the observational
limits on such modifications of the Schrödinger equation [12, 13].

Independently, Doebner and Goldin and collaborators have also studied nonlinear modi-
fications of the nonrelativistic Schrödinger equation [14–17]. While this was originally mo-
tivated by attempts to incorporate dissipative effects, they later have shown that classes of
nonlinear Schrödinger equations, including many of those considered in the literature, for
example, the one proposed in [11], can be obtained through nonlinear (in the wave function)
transformations of the linear quantum mechanical equation. They coined the name “gauge
transformations of the third kind” in this context, in analogy with the reasoning for gauge
transformations of the second kind (corresponding to the usual minimal coupling). In dis-
tinction to their work, our functional gauge transformations, being set up for quantum field
theory, work on the field configuration space over which the wave functional is defined.
This will be most clearly recognized in the way we introduce covariant functional deriva-
tives (cf. (12), (13) in Sect. 3). (Of course, the fact that functional derivatives come into play
here is not new per se: they are to the functional Schrödinger picture of quantum field the-
ory developed earlier by Jackiw and collaborators—reviewed and generalized for fermions
in [18]—what ordinary derivatives are to quantum mechanics.)

The necessity of generalizing quantum dynamics for quantum gravity has been discussed
in view of the “problem of time” and the Wheeler-DeWitt equation by Kiefer and by Bar-
bour [19, 20]. We recall that this equation, playing the role of the Schrödinger equation
there, is of the form of a constraint operator, i.e. the Hamiltonian of canonical gravity, act-
ing on the wave functional, Ĥ� = 0. There are two unpleasant features: no time derivative
appears [10, 19] and, since Ĥ is Hermitean, there seems to be no indication of complex
solutions [20]! Therefore, both authors pointed out that nonlinear modifications would be
a welcome remedy and in [19] it was proposed that these may assume the form of a “su-
pergauge potential” defined on configuration space. While formally analogous to the gauge
connection in the covariant derivatives introduced here, only some preliminary interpretation
has been offered that such connection might effectively represent certain quantum (vacuum)
effects of matter.
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In distinction, based on the proposed functional gauge symmetry, all dynamical and con-
straint equations of our theory are consistently derived from a gauge and Lorentz invariant
action, as we shall discuss. From the outset, this has nothing to do with gravity, in particular,
but may be applied to any quantum field theory.

The importance of maintaining a probabilistic interpretation of the wave function follow-
ing the Born rule is stressed in all previous works. We will recover this as well. However,
no understanding of the origins of the proposed nonlinearities has been provided, except in
the obvious case of gravity coupling studied by Kibble and Randjbar-Daemi [9]. Presently,
this is achieved by the gauge principle. Furthermore, we obtain the surprising result that
our theory automatically incorporates gravity in its simplest Newtonian form, which will be
discussed in Sect. 6.

Part of the motivation for the present work comes from recent considerations of the pos-
sibility of a deterministic foundation of quantum mechanics, as it has already been verified
in a number of models [21–39]. While general principles and physical mechanisms ruling
the construction of a deterministic classical model underlying a given quantum field theory
are hard to come by, cf. [26], the already known models are quite promising, amounting to
an existence proof that the quantum harmonic oscillator can be understood completely in
classical deterministic terms, see [21–25, 33, 34].

In general, we expect that with improved understanding of the emergence of quantum
mechanics also resulting nonlinear corrections to quantum mechanics, as it is, should be-
come visible. Note that any model which has an evolution equation that is linear in the
wave function, i.e. without any nonlinear feedback, can always be cast into the form of a
Schrödinger equation, possibly with modified potentials etc. Nonlinearity seems unavoid-
able, if one wants to go beyond the canonical framework of quantum theory. In the present
work, such a nonlinear extension of quantum field theory is a central aspect.

The paper is organized as follows. In Sect. 2, we recapitulate the work of [9] which forms
the basis for our argument that the gauge invariant (quantum) action introduced in Sect. 3
can be written in a Lorentz invariant way, despite the presence of a fundamental length
parameter. In Sect. 4, the dynamical and constraint equations are presented and a crucial
“nonlinearity factor” of the action is determined. Section 5 is dedicated to the discussion
of the validity of the Born rule in the resulting nonlinear quantum theory. In Sect. 6, it
is demonstrated that it leads to the Schrödinger-Newton equations in the one-dimensional
limit considering stationary states. Concluding remarks follow in Sect. 7.

2 The Schrödinger Picture for Given Background Space-Time

Following the work of Kibble and Randjbar-Daemi [9], we consider a four-dimensional
globally hyperbolic manifold M with a given metric gμν of signature (1,−1,−1,−1).1

Then, it is always possible to introduce a global slicing into space-like hypersurfaces, such
that a chosen family of such surfaces, {σ(t)}, is locally determined by:

xμ = xμ(ξ 1, ξ 2, ξ 3; t), (1)

in terms of intrinsic coordinates ξ r , and there exists an everywhere time-like vectorfield nμ,
the normal, with nμnμ = 1 and nμxμ

,r = 0, where xμ
,r ≡ ∂xμ/∂ξ r . We will make use of the

derivative with respect to t at fixed ξ r of a function f , ḟ ≡ ∂f/∂t |ξ . In particular, then, the

1Units are chosen such that � = c = 1.
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lapse function N and shift vector Nr are introduced through the relation ẋμ = Nnμ +Nrxμ
,r ,

the geometrical meaning of which is illustrated, for example, in Chap. 3.3 of [10].
We assume a given Lagrangean L of a field theory, such as for a real scalar field φ:

L ≡ 1

2
gμν∂μφ∂νφ − V (φ), (2)

where V (φ) incorporates mass or selfinteraction terms. Then, the invariant action is defined
by:

S ≡
∫

d4x
√−gL, (3)

where g ≡ detgμν . This, in turn, yields the stress-energy tensor T μν through the relation:

1

2

√−gT μν ≡ δS

δgμν

= 1

2

√−g(∂μφ∂νφ − gμνL). (4)

With the help of the induced metric γrs on σ(t), γrs ≡ gμνx
μ
,rx

ν
,s , and the hypersurface ele-

ment dσμ ≡ d3ξ
√−γ nμ, the surface-dependent Hamiltonian can be defined:

H(t) ≡
∫

σ(t)

dσμT μ
ν ẋν . (5)

In the simplest case, with ẋμ = δ
μ

0 (i.e., N = 1, Nr = 0) and xμ
,r = δμ

r , these relations reduce
to γrs = grs and H(t) = ∫

σ(t)
d3ξT 00, as expected.

If the stress-energy tensor can be expressed in terms of canonical coordinates and mo-
menta, for example, the scalar field φ = φ(ξ i, t) and its conjugated momentum 
 = 
(ξ i, t)

on time slices σ(t), we assume that the corresponding quantized theory exists, with φ and

 fulfilling the usual equal-t commutation relation. Of course, matters are not that simple
in a general curved background. Therefore, a heuristic derivation of the Schrödinger picture
from the manifestly covariant Heisenberg picture has been presented in [9]. We will not
pursue this further, since our aim here is simply to recover their Lorentz invariant form of
the functional Schrödinger equation, a generalization of which will follow from the action
principle to be considered in the course of this work.2

In any case, the functional Schödinger equation obtained by Kibble and Randjbar-Daemi
appears naturally as one would guess (� = c = 1):

i�̇ = H(t)�. (6)

Using the surface element dσμ given above, together with (5), and:

�̇ =
∫

σ(t)

d3ξ ẋμ δ

δxμ
�, (7)

the Schrödinger equation can also be represented in a local form:

i
δ

δxμ
� = √−γ nνT

ν
μ�. (8)

2As remarked in [9], the derivation from an action principle will guarantee the general coordinate invariance
of the theory. However, the Schrödinger picture clearly depends on the slicing of space-time as well as on
the parametrisation of the slices. Thus, invariance under surface deformations—which can be restricted to
diffeomorphism invariance [10]—is not implied here.
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We take from this section that the functional Schrödinger equation can be written in a way
that makes the behaviour under Lorentz transformations explicit. This applies, in particular,
to the case of a flat background space-time, where field quantization is well understood.

3 The Gauge Invariant Action

We consider the generic scalar field theory described by the Lagrangean of (2), while internal
symmetries and fermions can be introduced as we discussed earlier in the second of [6, 7].
Furthermore, specializing the result of the previous section for Minkowski space, we find:

H(t) =
∫

σ(t)

d3ξT 00 =
∫

d3x

{
−1

2

δ2

δφ2
+ 1

2
(∇φ)2 + V (φ)

}
≡ H [π̂ , φ], (9)

i.e., the usual Hamiltonian which is independent of the parameter time t ; intrinsic and
Minkowski space coordinates have been identified, �ξ = �x.

Here, in the Hamiltonian of (9) in particular, quantization is implemented by substituting
the canonical momentum π conjugate to the field φ (playing the role of “coordinate”):

π(�x) −→ π̂(�x) ≡ 1

i

δ

δφ(�x)
. (10)

Correspondingly, we have � = �[φ; t], i.e. a time dependent functional, in this coordinate
representation, and �̇ = ∂t� . So far, this is the usual functional Schrödinger picture of
quantum field theory applied to the chosen example of a scalar model [18, 40–45].

Next, we introduce functional gauge transformations [6, 7]:

� ′[φ; t] = exp(i�[φ; t])�[φ; t], (11)

where � denotes a time dependent real functional. These U (1) transformations are local in
the space of field configurations. They differ from the usual gauge transformations in QFT,
since we introduce covariant derivatives by the following replacements:

∂t −→ Dt ≡ ∂t − iAt [φ; t], (12)

δ

δφ(�x)
−→ Dφ(�x) ≡ δ

δφ(�x)
− iAφ[φ; t, �x]. (13)

The real functional A presents a new kind of ‘potential’ or ‘connection’. Generally, A de-
pends on t . However, it is a functional of φ in (12), while it is a functional field in (13).
We distinguish these components of A by the subscripts. Furthermore, the ‘potentials’ are
required to transform as:

A′
t [φ; t] = At [φ; t] + ∂t�[φ; t], (14)

A′
φ[φ; t, �x] = Aφ[φ; t, �x] + δ

δφ(�x)
�[φ; t]. (15)

Applying (11–15), it follows that the correspondingly generalized functional Schrödinger
equation is invariant under the U (1) gauge transformations.

Furthermore, it is suggestive to introduce an invariant ‘field strength’:

Ftφ[φ; t, �x] ≡ ∂tAφ[φ; t, �x] − δ

δφ(�x)
At [φ; t], (16)

in close analogy to ordinary gauge theories; note that Ftφ = [Dt ,Dφ]/(−i).
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We now postulate a consistent dynamics for the gauge ‘potential’ A, in order to give a
meaning to the above ‘minimal coupling’ prescription. All elementary fields supposedly are
present as the coordinates on which the wave functional depends—presently just a scalar
field, besides time. We consider the following U (1) invariant action:

 ≡
∫

dtDφ

{
�∗

(
N (ρ)

↔
iDt −H

[
1

i
Dφ,φ

])
� + l2

2

∫
d3x(Ftφ)2

}
, (17)

where �∗N
↔
iDt � ≡ 1

2N {�∗iDt� + (iDt�)∗�}, and with a dimensionless real function
N which depends on the density:

ρ[φ; t] ≡ �∗[φ; t]�[φ; t]. (18)

We shall see shortly that N incorporates a necessary nonlinearity; it will be uniquely deter-
mined in Sect. 4, cf. (25). The fundamental parameter l has dimension [l] = [length], for
dimensionless measure Dφ and � , independently of the dimension of space-time.3

The action  generalizes the action for the wave functional of a scalar field, which has
been employed for applications of Dirac’s variational principle to QFT, e.g., in [9, 40–43].
The quadratic part in Ftφ is the simplest possible extension, i.e. local in φ and quadratic in
the derivatives, together with the nonlinearity N (ρ) introduced here.

An immediate consequence of the U (1) invariance is that the Hamiltonian H , un-
like in QFT, cannot be arbitrarily shifted by a constant �E, gauge transforming � →
exp(−i�Et)� . Thus, there is an absolute meaning to the zero of energy in this theory.

Translation invariance of the action, (17), gives rise to a conserved energy functional,
where a contribution which is solely due to At and Aφ is added to the matter term, which is
modified by the covariant derivatives.

Furthermore, following from the discussion of Sect. 2, the Lorentz invariance of this
theory is guaranteed. In particular, the action can be written in a Lorentz (and Poincaré)
invariant way, using the appropriate surface-dependent Hamiltonian, cf. (5), despite that a
fundamental length l enters here.4

The action depends on �,�∗,At , and Aφ separately. While a Hamiltonian formulation
is possible, the equations of motion and a constraint can be obtained directly by varying 

with respect to these variables.

4 The Dynamical and Constraint Equations

The dynamical equations of motion were previously obtained in [6, 7] and are reproduced
here for convenience. The gauge covariant equation for the �-functional is:

(ρN (ρ))′iDt�[φ; t] = H

[
1

i
Dφ,φ

]
�[φ; t], (19)

3Note that this parameter has necessarily the dimension of a length, in order to give the action its correct
dimension; it presents the coupling constant of our theory and will be related to Newton’s constant in Sect. 6.
By suitably rescaling the gauge ‘potentials’, the coupling constant could be moved to the covariant derivatives,
as originally discussed [6, 7]; however, as is familiar from ordinary non-Abelian gauge theories, the equivalent
action is often more convenient where the coupling appears only in one place.
4The coordinates xμ, of course, must not be confused with the intrinsic coordinates ξ i and time parameter t .
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where f ′(ρ) ≡ df (ρ)/dρ. This replaces the usual functional Schrödinger equation (and
similarly its adjoint).

The nonlinear (19) preserves the normalization of � . Fixing it at an initial parameter
time, in terms of an arbitrary constant C0:

〈�|�〉 ≡
∫

Dφ�∗� = C0, (20)

it is conserved under further evolution, while the overlap of two different states, 〈�1|�2〉,
may vary. This is indicative of the standard probability interpretation related to �∗� , which
we will discuss in the next section in more detail.

Next, there is an invariant ‘gauge field equation’:

∂tFtφ[φ; t, �x] = − 1

2il2
(�∗[φ; t]Dφ(�x)�[φ; t] − �[φ; t](Dφ(�x)�[φ; t])∗), (21)

which completes the dynamical equations.
However, there is no time derivative acting on the variable At in the action. Therefore, it

acts as a Lagrange multiplier for a constraint, which is the gauge invariant ‘Gauss’ law’:

∫
d3x

δ

δφ(�x)
Ftφ[φ; t, �x] = − 1

l2
ρN (ρ). (22)

Of course, it differs from the usual one in QED, for example. This raises the question,
whether our functional U (1) gauge symmetry is compatible with the presence of standard
internal symmetries. This is answered affirmatively in the second of [6, 7].

Equation (22) can be combined with (21) to result in a continuity equation:

0 = ∂t (ρN (ρ)) − 1

2i

∫
d3x

δ

δφ(�x)
(�∗Dφ(�x)� − �(Dφ(�x)�)∗), (23)

expressing local U (1) ‘charge’ conservation in the space of field configurations. Functionally
integrating (22), we find that the total ‘charge’ Q has to vanish at all times:

Q(t) ≡ 1

l2

∫
DφρN (ρ) = 0, (24)

since the functional integral of a total derivative is zero [44, 45]. This is different from
integrating the usual Gauss’ law in electrodynamics over all space, for example, were there
can be a flux of the fields out to infinity. The necessity of the nonlinearity now becomes
obvious. Without it, the vanishing total ‘charge’ could not be implemented, as it would be
in conflict with the normalization (20).

We proceed to determine the nonlinearity factor, N (ρ) �= 1. In fact, we would like to
implement (24), similarly as the normalization, at an initial parameter time t . Since it has to
be a constant of motion, ∂tQ(t) = 0, we express this, with the help of (19), as a condition
on ρN (ρ). It is easily seen that the only solution here is a linear function:

ρN (ρ) = C1

(
ρ − C0

(∫
Dφ

)−1)
, (25)
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if one wants to avoid further constraining � or �∗; the latter would make it more difficult,
if not impossible, to obtain linear quantum mechanics as a limiting case.5

Evidently, the volume of the space of fields, � ≡ ∫
Dφ, needs to be regularized, as well

as the second functional derivatives at coinciding points which appear. A cut-off on field
amplitudes has to be introduced together, for example, with dimensional regularization [44,
45] or, more convenient here, the point-splitting technique [18]. Clearly, a related renormal-
ization procedure is an interesting subject for further study, since it has to take into account
the new functional gauge symmetry.

5 Probability Versus ‘Charge’

The homogeneity property is necessary for the probability interpretation of the density ρ =
�∗� according to Born’s rule [8, 11–13]: � and z� (z ∈ Z) have to present the same
physical state. In this way, states are associated with rays in a Hilbert space (instead of
vectors).

For the present case, it is useful to consider the set of scale transformations:

ρ = Ca
0C

−1
1 ρ ′,

∫
Dφ = C1−a

0 C1

∫
Dφ′, (26)

such that
∫

Dφ′ρ ′ = 1; we recall that the real measure Dφ and constants C0,1 are chosen
dimensionless, without loss of generality; a is real. Furthermore, we rescale:

(�x; t) = C−a/2
0 C1/2

1 (�x ′; t ′), (φ;At ) = Ca/2
0 C−1/2

1 (φ′;A′
t ), (27)

and, consistently:

(δφ;Aφ) = Ca
0C

−1
1 (δφ′ ;Aφ′). (28)

Under these transformations, the action transforms as:

 = C1
′, (29)

where ′ is defined like , (17), however, replacing all quantities by the primed ones. One
arrives at this result, provided the Hamiltonian H , cf. (9), contains no dimensionful con-
stants, such as in a Lagrangean mass term, ∝ m2φ2, which could be contained in our model;
a selfinteraction of the form ∝ λφ4 introduces a dimensionless coupling λ instead.

There are several implications. First, the scale transformations change the overall scale
of the action, say, in units of �, by the constant factor C1. This is equivalent to the rescaling
� = �

′/C1. However, since we prefer to choose units such that � = 1, we should also fix
C1 = 1, henceforth.6 Second, since the constant C0 does not affect the transformation of ,
we can always choose to normalize the wave functional to C0 = 1, see (20).

We see that states, as far as � is concerned, are represented by rays. Therefore, a proba-
bility interpretation of �∗� according to the Born rule can be maintained. This is in agree-
ment with the observation that (19), if it were not for the presence of the covariant deriva-
tives, now appears like the usual functional Schrödinger equation. Summarizing the previous

5In [7], a logarithmic form was chosen. In view of the present discussion, however, it should be dismissed,
since it is not based on a constant of motion.
6The overall sign of ρN (ρ), cf. (25), is chosen with hindsight, see Sect. 6.
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discussion, we now have:

ρN (ρ) = ρ −
(∫

Dφ

)−1

, (30)

iDt�[φ; t] = H

[
1

i
Dφ,φ

]
�[φ; t]. (31)

However, it must be stressed that the ‘potentials’ At and Aφ are selfconsistently determined
through (21), (22). Therefore, we arrive here at intrinsically nonlinear quantum mechanics.7

The difference to standard quantum mechanics also shows up clearly in (23), with the
first term now replaced by ∂tρ: the flux of probability over the space of field configurations
is affected nonlinearly by �∗ and � through the ‘potentials’.

Finally, we remark that in presence of dimensionful parameters in the Hamiltonian the
above scale symmetry, (26–29), breaks down. In particular, then the normalization of �

cannot be chosen freely; correspondingly, rays break into inequivalent vectors. In this sit-
uation, it is appropriate to consider � and �∗ as giving rise to two oppositely ‘charged’
real components of the wave functional, �+ ≡ (� + �∗)/

√
2 and �− ≡ (� − �∗)/i

√
2,

which interact, while preserving the normalization of �∗� . Different normalizations, then,
correspond to physically different sectors of the theory, i.e. a charge superselection rule.

However, the absence of the homogeneity property modifies the usual measurement the-
ory. In particular, the usual “reduction of the wave packet” postulate [1] cannot be main-
tained, in this case. This has been discussed in detail in [8] and formed the starting point for
the particular nonlinear theory proposed there, mentioned before in Sect. 1.

6 Stationary States and the Schrödinger-Newton Equations

The time dependence in (19–22) can be separated with the Ansatz �[φ; t] ≡
exp(−iωt)�ω[φ], ω ∈ R, and consistently assuming time independent A-functionals. Thus,
the (19), together with (30), yields:

ω�ω[φ] = H

[
1

i
Dφ,φ

]
�ω[φ] −At [φ]�ω[φ], (32)

with Dφ = δ
δφ

+ iAφ and ρω ≡ �∗
ω[φ]�ω[φ]. From (21) follows:

1

2i
(�∗

ω[φ]Dφ(�x)�ω[φ] − �ω[φ](Dφ(�x)�ω[φ])∗) = 0, (33)

which expresses the vanishing of the ‘current’ in the stationary situation. Applying a time
independent gauge transformation, cf. (11), (15), the stationary wave functional can be made

7In the second of [7], we have argued that microcausality of the present theory holds. The weak superposition
principle [11], generally, must be expected to fail: for two non-overlapping sources adding to the right-hand
sides of (21), (22), the resulting ‘potentials’ must be expected to propagate away from the sources in field
space. Thus, the sum of two non-overlapping solutions �1,2 will hardly present a solution of the coupled
equations. However, if two stationary non-overlapping solutions exist, then their sum also presents a solution;
see the stationary equations in Sect. 6.
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real. Then, (33) implies Aφ = 0; consequently, Dφ → δ
δφ

everywhere. Finally, ‘Gauss’ law’,
(22), determines At :

∫
d3x

δ2

δφ(�x)2
At [φ] = 1

l2

(
ρ −

(∫
Dφ

)−1)
, (34)

which has to be solved selfconsistently together with (32). Separation of the time depen-
dence thus leads to two coupled equations. They represent a field theoretic generalization of
the stationary Schrödinger-Newton equations, as we shall explain.

The time dependent Schrödinger-Newton equations for a particle of mass m are given
by:

i�∂tψ = − �
2

2m
∇2ψ − m�ψ, ∇2� = 4πGm|ψ |2, (35)

where G ≡ l2
P c2/� is Newton’s gravitational constant (here related to the Planck length lP )

and � denotes the gravitational potential. They represent the nonrelativistic approximation
to “semiclassical gravity”, i.e. Einstein’s field equations coupled to the expectation value of
the operator-valued stress-energy tensor of quantum matter—see, for example, [9, 46–50],
and further references therein. They play an important role in arguments related to “semi-
classical gravity”, to gravitational self-localization of mesoscopic or macroscopic mass dis-
tributions, and to the role of gravity in Diósi’s and Penrose’s objective reduction scenarios.

Considering a Universe which consists only of a single point, we find that our field the-
ory equations (32) and (34) reduce to the stationary Schrödinger-Newton equations in one
dimension. Appropriate rescalings by powers of l, m, �, and c of the various quantities
have to be incorporated, in order to give the equations their one-dimensional form, where
Newton’s constant G is a dimensionless parameter. If there is a nonzero potential V (φ) in
our Hamiltonian, this extends the Schrödinger equation in (35) by an additional potential
term. Explicitly, keeping units such that � = c = 1 and considering the Hamiltonian of (9)
with V (φ) ≡ 0, the following substitutions have to be performed, in order to arrive at the
stationary limit of (35):

|�|2 −→ 4πG2m|ψ |2, At −→ m�, (36)
∫

d3x
δ2

δφ(x)2
−→ 1

m

d2

dq2
,

(37)∫
Dφ −→ (4πG2m)−1

∫ +Q/2

−Q/2
dq = Q/4πG2m,

where m is the relevant (particle) mass scale and Q denotes a regulator length, much larger
than any length scale of the one-dimensional system. Of course, the gradient terms of the
Hamiltonian, ∝ (∇φ)2, do not contribute in this limit (“a single point has no neighbours”).

It seems remarkable that the gravitational interaction arises here in the space of quantum
states (configuration space). Yet, in view of the fundamental length l present in the action,
(17), it is perhaps not a complete surprise that our gauge theory incorporates gravity. We
notice, however, also a deviation from Newtonian gravity, presented by the constant term on
the right-hand side of (34). While it is natural to let this term become arbitrarily small in the
quantum mechanical limit just discussed, its presence was shown to be necessary for the full
theory in Sect. 4. This is an important topic for further study, related to the regularization of
the theory.
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In [49], it has recently been shown that sufficiently large Gaussian wave packets show a
tendency to shrink in width as they evolve according to the time dependent Schrödinger-
Newton equations. This leads to a decrease of interference effects, which possibly will
be observable in near-future molecular interference experiments. It will be interesting to
study the behaviour of such wave packets according to the present theory. We speculate
that coherent superpositions of displaced wave packets (Schrödinger cat states) will de-
cay by giving rise to time dependent ‘potentials’ At and Aφ , while attracting each other
similar to corresponding classical matter distributions. If these remarks can be further sub-
stantiated, this should have some impact on further attempts to understand the “collapse
of the wave function” or “reduction of the wave packet” in a consistent dynamical the-
ory.

7 Concluding Remarks

A relativistic U(1) gauge theory has been presented which constitutes an intrinsically non-
linear extension of quantum mechanics or quantum field theory.

Closest in spirit seems the work of Kibble and Randjbar-Daemi [9] where such
nonlinearities—due to coupling the expectation of the quantum matter stress-energy ten-
sor to classical general relativity or to making parameters of the theory state dependent—
have been discussed in a relativistic setting before. However, this has been reminiscent of a
mean-field approximation.

In distinction, based on the gauge principle, we have introduced two ‘potentials’,
At and Aφ , which are not independent new fields but functionals that depend on the same
field variables of the underlying (scalar or other) field theory as the wave functional � . The
relevant dynamical and constraint equations follow from a relativistic invariant action prin-
ciple, postulated in Sect. 3. Thus, if the ‘potentials’ are eliminated, in principle, by solving
the respective equations, a nonlinear theory in � necessarily results.

We observe that in the absence of quantum matter, � = 0, the (21) and (22) that deter-
mine the ‘field strength’ Ftφ—and similarly in the (0 + 1)-dimensional limit—have no time
dependent solutions. Therefore, the ‘potentials’ do not propagate independently of matter
sources here.8

We have shown that the essential homogeneity property holds, which is related to the
representation of states by rays in Hilbert space. Thus, the Born rule can be applied, giving
a probabilistic interpretation to �∗� [8, 11–13]. However, it breaks down, if the assumed
underlying classical model contains dimensionful parameters. In this case, a discussion in
terms of the ‘charged’ components of � is appropriate, which invites further interpretation.

Related to the presence of a fundamental length l in the action, we have shown that in the
zero-dimensional limit the presented theory recovers the recently much studied Schrödinger-
Newton equations, coupling Newtonian gravity to quantum mechanics [9, 46–50]. Thus, the
proposed theory incorporates Newtonian gravity into quantum field theory: unlike indepen-
dent degrees of freedom coupled to matter in the usual way, gravity is encoded here into a
universal nonlinear extension of quantum field theory.

In the future, the regularization of the theory and a perturbative scheme need to be
worked out, in order to have control of its microscopic behaviour in situations where grav-

8This is due to the fact that the analogue of a magnetic field is missing for any underlying model based on
a one-component field, see (2) and (16). The situation changes in the presence of internal symmetries, as
discussed in the second of [7].
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ity is weak. Naturally, it will be interesting whether the presented ideas of a new func-
tional gauge symmetry can be further generalized and what ensuing experimental predic-
tions will be.
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